Minggu, 12 April 2020

RESUME ANALISIS REGRESI BERGANDA DATA PROMOSI DAN PENJUALAN TERHADAP KEUNTUNGAN TAHUN 2012 – 2014 DENGAN SPSS

RESUME ANALISIS REGRESI BERGANDA DATA PROMOSI DAN PENJUALAN TERHADAP KEUNTUNGAN TAHUN 2012 – 2014 DENGAN SPSS

NAMA/NIM       : MELIN DEWANTI / 18510225
MATA KULIAH   : STATISTIK II
DOSEN                  : M. NANANG CHOIRUDDIN, S.E, M.M

Analisis Regresi linier (Linear Regression analysis) adalah teknik statistika untuk membuat model dan menyelidiki pengaruh antara satu atau beberapa variabel bebas (Independent Variables) terhadap satu variabel respon (dependent variable).
Regresi Linier Berganda : Analisis regresi dengan dua atau lebih Independent Variable , dengan formulasi umum:

Fungsi persamaan regresi 
·         untuk memprediksi nilai Dependent Variable (Y),
  • digunakan untuk mengetahui arah dan besarnya pengaruh Independent Variable
(X)      terhadap Dependent Variable (Y).
Model statistik dapat dikatakan sebagai model yang baik apabila memenuhi beberapa kriteria berikut menurut Gujarati (2006) :
1. Parsemoni. Ketikdakmampuan model kita dalam mencakup semua realitas yang ada itu menjadikan kita harus berfokus membuat model khusus untuk menjelaskan realitas yang menjadi tujuan penelitian kita saja.
2. Mempunyai identifikasi tinggi. Artinya dengan data yang tersedia, parameter-parameter yang diestimasi memiliki nilai yang unik (tunggal, berdiri sendiri) sehingga hanya akan ada satu parameter saja.
3. Keselarasan atau Goodness of fit. Khusus untuk analisis regresi, ialah menerangkan sebanyak mungkin variasi variabel terikat dengan menggunakan variabel bebas dalam model. Oleh karena itu, suatu model dikatakan baik jika indikator pengukur kebaikan model, yaitu adjusted R square bernilai tinggi.
Asumsi yang harus terpenuhi dalam analisis regresi (Gujarati, 2003)adalah:
1.         Residual menyebar normal (asumsi normalitas)
2.         Antar Residual saling bebas (Autokorelasi)
3.         Kehomogenan ragam residual (Asumsi Heteroskedastisitas)
4.         Antar Variabel independent tidak berkorelasi (multikolinearitas)
Asumsi-asumsi tersebut harus diuji untuk memastikan bahwa data yang digunakan telah memenuhi asumsi analisis regresi.
1.    Input data (contoh) Keuntungan, Penjualan dan Biaya Promosi dalam file SPSS. Definisikan variabel-variabel yang ada dalam sheet Variable View.
Sumber data : Hipotesis.
Masukan data ke dalam program SPSS, sehingga akan seperti tampilan dibawah ini,


2.       Pilih Menu Analyze Regression Linear , sehingga muncul Dialog Box sesuai dibawah ini. Masukkan variabel Kredit pada kolom Dependent Variable, dan tiga variabel lain sebagai Independent(s),
3.       Pilih Statistics, cek list Estimates, Collinearity Diagnostics, dan Durbin Watson Continue
4.       Pilih Plots, cek List Normal Probability Plot Continue,
5.       Pilih Save, cek list Unstandardized dan Studentized deleted Residuals,
6.       Continue OK,
7.       Langkah pertama yang harus dilakukan adalah membuang data outlier sehingga hasil output analisis yang dihasilkan tidak lagi terpengaruh oleh pengamatan yang menyimpang,
a.                            Uji Outlier
Perhatikan pada sheet Data View kita, maka kita akan temukan dua variabel baru, yaitu RES_1 (Residual) dan SDR (Studentized deleted Residual),
 Variabel Baru yang terbentuk
SDR adalah nilai-nilai yang digunakan untuk mendeteksi adanya outlier, Dalam deteksi outlier ini kita membutuhkan tabel distribusi t, Kriteria pengujiannya adalah jika nilai absolute |SDR| > , maka pengamatan tersebut merupakan outlier,
n = Jumlah Sampel, dan k = Jumlah variabel bebas
Nilai t pembanding adalah sebesar 2,056, Pada kolom SDR, terdapat 1 pengamatan yang memiliki nilai |SDR| > 2,056, yaitu pengamatan ke 17,
Berikut ini adalah outputnya,
Analisis:
b.   R Square sebagai ukuran kecocokan model
Tabel Variables Entered menunjukkan variabel independent yang dimasukkan ke dalam model, Nilai R Square pada Tabel Model Summary adalah prosentase kecocokan model, atau nilai yang menunjukkan seberapa besar variabel independent menjelaskan variabel dependent,
Pada gambar output terlihat nilai R Square adjusted (untuk regresi berganda) sebesar 0,999, artinya variabel independent dapat menjelaskan variabel dependent sebesar 99,8%, sedangkan 0,2% dijelaskan oleh faktor lain yang tidak terdapat dalam model,
c.    Uji F
Uji F dalam analisis regresi linier berganda bertujuan untuk mengetahui pengaruh variabel independent secara simultan, yang ditunjukkan oleh dalam table ANOVA,
    Rumusan hipotesis yang digunakan adalah:
H0 = Kedua variabel independent secara simultan tidak berpengaruh signifikan terhadap variabel Jumlah Kemiskinan,
H1 = Kedua variabel independent secara simultan berpengaruh signifikan terhadap variabel Jumlah Kemiskinan,
·         Kriteria pengujiannya adalah:
Jika nilai signifikansi > 0,05 maka keputusannya adalah H0 diterima
Jika nilai signifikansi < 0,05 maka keputusannya adalah H0 ditolak
Berdasarkan kasus, Nilai Sig, yaitu sebesar 0,000, sehingga dapat disimpulkan bahwa Promosi dan penjualan secara simultan berpengaruh signifikan terhadap Besarnya Keuntungan.
d. Uji t
Uji t digunakan untuk mengetahui pengaruh masing-masing variabel independent secara parsial, ditunjukkan oleh Tabel Coefficients
 
Rumusan hipotesis yang digunakan adalah:
Ho : Penjulan tidak mempengaruhi besarnya Jumlah Keuntungan secara signifikan
H1 : Penjualan mempengaruhi besarnya Jumlah Keuntungan secara signifikan
Hipotesis tersebut juga berlaku untuk variabel Inflasi, Perhatikan nilai Unstandardized coefficients B untuk masing-masing variabel, Variabel Penjualan mempengaruhi Jumlah Keuntungan yang disalurkan sebesar 0,06, Nilai ini positif artinya semakin besarnya Penjualan, maka semakin besar pula jumlah keuntungan, artinya jika penjualan naik sebesar 1.000 satuan maka keuntungan akan naik sebesar 60 satuan. Demikian juga variabel Promosi berpengaruh positif terhadap jumlah Keuntungan sebesar 0,818, artimya jika promosi naik 1000 satuan maka keutungan akan naik sebesar 818 satuan.
Signifikansi pengaruh variabel independent terhadap variabel dependent dapat dilihat dari nilai Sig pada kolom terakhir, Nilai signifikansi untuk variabel Penjualanyaitu sebesar 0,000, artinya variabel ini berpengaruh secara signifikan terhadap Jumlah Keuntungan, Hal ini berlaku juga untuk variabel promosi, dimana nilai signifikansinya < 0,05, sehingga kesimpulannya adalah ditolaknya H0 atau dengan kata lain Penjualan dan Promosi mempunyai pengaruh signifikan terhadap Jumlah Keuntungan,

UJI ASUMSI KLASIK ANALISIS REGRESI
a.          Uji Normalitas
Uji normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal. Data yang banyaknya lebih dari 30 angka               (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar.
Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji statistik normalitas. Uji statistik normalitas yang dapat digunakan diantaranya Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro Wilk, Jarque Bera.
Salah satu cara untuk melihat normalitas adalah secara visual yaitu melalui Normal P-P Plot, Ketentuannya adalah jika titik-titik masih berada di sekitar garis diagonal maka dapat dikatakan bahwa residual menyebar normal

Normal P-P Plot of Residual
Namun pengujian secara visual ini cenderung kurang valid karena penilaian pengamat satu dengan yang lain relatif berbeda, sehingga dilakukan Uji Kolmogorov Smirnov dengan langkah-langkah:
1.    Pilih Analyze Descriptives Explore, Setelah muncul Dialog Box masukkan variabel Unstandardized residual pada kolom Dependent List, Pilih Plots kemudian Cek list Box Plot dan Normality plots with test OK
2.      Output yang muncul adalah seperti pada gambar dibawah ini, Sesuai kriteria, dapat disimpulkan bahwa residual menyebar normal.


Test normality dapat dilihat dari nilai sig
jika nilai sig lebih besar dari 5% maka dapat disimpulkan bahwa residual menyebar normal, dan jika nilai sig lebih kecil dari 5% maka dapat disimpulkan bahwa residual menyebar tidak normal.
Dari hasil test of normality diketahui nilai statistik 0,116 atau nilai sig 0,20 atau 20% lebih besar dari nilai α 5%, sehingga maka dapat disimpulkan bahwa residual menyebar normal
b.      Uji Autokorelasi
Uji autokorelasi digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik autokorelasi yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi. Prasyarat yang harus terpenuhi adalah tidak adanya autokorelasi dalam model regresi. Metode pengujian yang sering digunakan adalah dengan uji Durbin-Watson (uji DW) dengan ketentuan sebagai berikut:
1.       Jika d lebih kecil dari dL atau lebih besar dari (4-dL) maka hopotesis nol ditolak, yang berarti terdapat autokorelasi.
2.       Jika d terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.
3.       Jika d terletak antara dL dan dU atau diantara (4-dU) dan (4-dL), maka tidak menghasilkan kesimpulan yang pasti.
Nilai du dan dl dapat diperoleh dari tabel statistik Durbin Watson yang bergantung banyaknya observasi dan banyaknya variabel yang menjelaskan.
Sebagai contoh kasus kita mengambil contoh kasus pada uji normalitas pada pembahasan sebelumnya. Pada contoh kasus tersebut setelah dilakukan uji normalitas, multikolinearitas, dan heteroskedastisitas maka selanjutnya akan dilakukan pengujian autokorelasi.
Nilai Durbin Watson pada output dapat dilihat pada Gambar yaitu sebesar 1,641, Sedangkan nilai tabel pembanding berdasarkan data keuntungan dengan melihat pada Tabel 4,3, nilai dL,α = 1,153, sedangkan nilai d U,α=1,376, Nilai dU,α <dw <4- dU,α sehingga dapat disimpulkan bahwa residual tidak mengandung autokorelasi.
Model Dengan Ln

Nilai Durbin Watson dalam model ln pada output dapat dilihat pada Gambar yaitu sebesar 1,812, Sedangkan nilai tabel pembanding berdasarkan data keuntungan dengan melihat pada Tabel 4,3, nilai dL,α = 1,153, sedangkan nilai dU,α=1,376, Nilai dU,α <dw <4-dU,α sehingga dapat disimpulkan bahwa residual tidak mengandung autokorelasi.
c.           Uji Multikolinearitas
Multikolinearitas atau Kolinearitas Ganda (Multicollinearity) adalah adanya hubungan linear antara peubah bebas X dalam Model Regresi Ganda. Jika hubungan linear antar peubah bebas X dalam Model Regresi Ganda adalah korelasi sempurna maka peubah-peubah tersebut berkolinearitas ganda sempurna (perfect multicollinearity). Sebagai ilustrasi, misalnya dalam menduga faktor-faktor yang memengaruhi konsumsi per tahun dari suatu rumah tangga, dengan model regresi ganda sebagai berikut :

Peubah X1 dan X2 berkolinearitas sempurna karena X1 = 12X2. Jika kedua peubah ini dimasukkan ke dalam model regresi, akan timbul masalah Kolinearitas Sempurna, yang tidak mungkin diperoleh pendugaan koefisien parameter regresinya.
Jika tujuan pemodelan hanya untuk peramalan nilai Y (peubah respon) dan tidak mengkaji hubungan atau pengaruh antara peubah bebas (X) dengan peubah respon (Y) maka masalah multikolinearitas bukan masalah yang serius. Seperti jika menggunakan Model ARIMA dalam peramalan, karena korelasi antara dua parameter selalu tinggi, meskipun melibatkan data sampel dengan jumlah yang besar. Masalah multikolinearitas menjadi serius apabila digunakan unruk mengkaji hubungan antara peubah bebas (X) dengan peubah respon (Y) karena simpangan baku koefisiennya regresinya tidak siginifikan sehingga sulit memisahkan pengaruh dari masing-masing peubah bebas
Pendeteksian multikolinearitas dapat dilihat melalui nilai Variance Inflation Factors (VIF) pada table dibawah ini (model tanpa ln dan Model dengan Ln), Kriteria pengujiannya yaitu apabila nilai VIF < 10 maka tidak terdapat mutikolinearitas diantara variabel independent, dan sebaliknya, Pada tabel ditunjukkan nilai VIF seluruhnya > 10, sehingga asumsi model tersebut mengandung multikolinieritas.

Model Dengan Ln



Cara mengatasi multikolinearitas
Beberapa cara yang bisa digunakan dalam mengatasi masalah multikolinearitas dalam Model Regresi Ganda antara lain, Analisis komponen utama yaitu analisis dengan mereduksi peubah bebas (X) tanpa mengubah karakteristik peubah-peubah bebasnya[, penggabungan data cross section dan data time series sehingga terbentuk data panel, metode regresi step wise, metode best subset, metode backward elimination, metode forward selection, mengeluarkan peubah variabel dengan korelasi tinggi walaupun dapat menimbulkan kesalahan spesifikasi, menambah jumlah data sampel, dan lain-lain.
d.          Uji Heteroskedastisitas
Heteroskedastisitas adalah adanya ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi.
Mengapa dilakukan uji heteroskedastitas? jawabannya adalah untuk mengetahui adanya penyimpangan dari syarat-syarat asumsi klasik pada model regresi, di mana dalam model regresi harus dipenuhi syarat tidak adanya heteroskedastisitas.
Uji heteroskedastisitas dilakukan dengan cara meregresikan nilai absolute residual dengan variabel – variabel independent dalam model, Langkah-langkahnya adalah:
1.    Pilih Transform Compute Variable
2.    Pilih All pada Function Group kemudian pilih Abs pada Functions and Special Variables dengan cara melakukan double klik, Selanjutnya ketik Abs_Res pada Target Variable dan masukkan Unstandardized Residual_1 pada Numeric Expression,  OK
3.       Outputnya adalah berupa variabel baru pada Data View,
4.    Next, pilih Analyze Regression   Linear  Masukkan Abs_Res sebagai dependent Variable Sedangkan variabel Penjualan dan Promosi sebagai variabel independent.
5.    Pilih Estimates dan Model Fit pada Menu Statistics   Continue OK
6.    Perhatikan output regresi antara Residual dengan Variabel-variabel independent lainnya seperti terlihat pada table koefisien dibawah ini, Output menunjukkan tidak adanya hubungan yang signifikan antara seluruh variabel independent terhadap nilai absolute residual, sehingga dapat disimpulkan bahwa asumsi non-heteroskedastisitas terpenuhi.

KESIMPULAN
Hasil dari uji R square sebagai ukuran kecocokan model variabel independent dapat menjelaskan variabel dependent sebesar 99,8%, sedangkan0,2% dijelaskan oleh faktor lain. Hasil uji F dan uji T, promosi dan penjualan secara simultan berpengaruh signifikan terhadap besarnya keuntungan.



   DAFTAR PUSTAKA
Barrow, Mike. Statistics of Economics: Accounting and Business Studies. 3rd edition.
Upper Saddle River, NJ: Prentice-Hall, 2001
Gujarati, Damodar N. 1995. Basic Econometrics. Third Edition.Mc. Graw-Hill, Singapore.
Ghozali, Imam, Dr. M. Com, Akt, 2001, “Aplikasi Analisis Multivariate dengan Program SPSS”, Semarang,
BP Undip.
Singgih Santosa, Berbagai Masalah Statistik dengan SPSS versi 11.5, Cetakan ketiga, Penerbit PT Elex
Media Komputindo Jakarta 2005
Sembiring, R.K. 2003. Analisis Regresi. Edisi Kedua. Bandung: Institut Teknologi Bandung.
Basuki, A.T. 2016. Regresi Berganda Dan Uji Asusmi Klasik Dengan SPSS. Yogyakarta: 
Universitas Muhammadiyah Yogyakarta.






1 komentar:

  1. Materi yang dipaparkan cukup rinci dan mudah dipahami, sehingga saya lebih dapat memahami materi terkait analisis regresi berganda ini. Terima kasih dan semoga bisa menjadi manfaat bagi banyak orang🙏🙏

    BalasHapus

Review Jurnal Analisis Opsi dan Future Nama / NIM : Yuni Mega Lestari / 17510175 Mata Kuliah : Analisis Sekuritas Dosen Mata Kuliah ...